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SUMMARY
For the boundary value problem of steady heat conduction with general boundary conditions a variational problem
is formulated by adding a simple surface integral to Butler’s volume integral.

1. Introduction

There has been considerable interest recently in formulating the problem of heat conduction
as a variational problem. For example, Hays [ 1] gives an integral which takes on a stationary
value when the temperature distribution satisfies the heat conduction equation in a region R,
provided that at all points of the surface of R either the temperature is prescribed or the normal
heat flux vanishes. Hays’formulationis applicable to both time-dependent and steady problems,
and the conductivity and thermal capacity may be any given functions of the temperature.
Butler [2] proposes a much simpler integral for steady problems with the same type of boundary
conditions.

However, one often has the normal heat flux prescribed, rather than vanishing, on a portion
of the bounding surface, or the even more complicated case when neither the temperature nor
the normal heat flux is given, but rather a relation between them exists, as, for example, a
surface heated or cooled by convection or radiation. It is the purpose of this note to show that
these more complicated problems may be expressed as variational problems by adding a simple
surface integral to Butler’s volume integral.

Biot [3] has also given variational principles for heat flow problems and has included the
types of boundary conditions considered here. However, he is primarily interested in time-
dependent problems, and his integrals do not seem to reduce in the steady case to the simple
forms given in the present paper.

2. Problem I: Normal Heat Flux Prescribed

Let it be required to find the steady temperature distribution, T(x,, x,, X3), in a region R,
bounded by a surface S, subject to the boundary conditions

T is prescribed on S, a portion of S. (1)
g;n; is prescribed on S,, the remainder of S. (2

Here, g; denotes the Cartesian components of the heat flux vector and n; denotes the components
of the outer unit normal to S. The heat flux is related to the temperature field by the Fourier
law of heat conduction, ’

q4;= — K T:i s . (3)
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where K= K(T) is any given function. The conservation of energy requires that
qi,i = 0 iIl R . (4)

Let T*(x;, x,, x3) be the temperature distribution which satisfies the system (1), (2), (3), (4);
and let K* and g} be the corresponding conductivity and heat flux. Further, let T (x,, x,, x3)
be a neighboring function to T*, satisfying the same boundary conditions. Then T may be
expressed as

T=T*+en, (5)

where 7 is an arbitrary function of the co-ordinates and ¢ is a small parameter. The conductivity
corresponding to the temperature field T is

K = K*+e&nK'(T¥), (6)
where K'(T*) denotes the derivative of K(T) with respect to T, evaluated at T = T*. Similarly,
q;= — [K*+enK (T*)](T¥ + o),

which is, to the first order in &,

4;=qf —e(nK*),; . (7)
Since T and T* must agree on S,, and ¢;n; and g¥n; agree on S,

n=0o0nS§;; : (8)

(nK*);n;=0o0n S, . 9)

Define H(T) to be

H(T)={K(T)dT . (10)
Then, for T near to T*

H(T)= H*+eK*. (11)
It can now be shown that the following integral assumes a stationary value when T=T%*:

IZL qiq,.dv+J'S g;n;Hds . (12)

If one expresses the right side of (12) in terms of starred functions and variations, one can then
find

(d1/ds),—o = [ g K)ot | m [~ HYK), + gt K]S, (13)
R S,

The volume integral in (13) may be written

[ arokeyiao = [ (@rnkco o | axvaran. 14
R R /R

The first integral on the right side of (14) may be converted to a surface integral, and the
second vanishes because g¥ must satisfy equation (4). Also, in (13), the first term in the surface
integral vanishes by the boundary condition (9). Hence, (13) becomes

(dI/de)y—o = ——{ q;"nK*nids+J q¥nK*n;ds . (15)
s S .

But in (15), there is no contribution from the integration over S, because 5 vanishes there by
boundary condition (8). Hence,

(d1/de),—o =0 (16)
which proves that I is stationary when T =T*.

Journal of Engineering Math., Vol. 3 (1969) 119-121



Steady heat conduction with mixed boundary conditions 121
3. Problem II: Normal Heat Flux a Function of Temperature

This is the same as Problem I, except that boundary condition (2) is replaced by
g =F(T)on S,, (17)

with F a specified function but neither ¢; nor T given on S,.
Define G(T) to be the function

G(T)=[K(T)F(T)dT . (18)
If, as before, T* is the temperature distribution which solves the problem, and & is its variation,
G(T)= G*+enK*F* . (19)

A functional which is stationary in this case is
J =J q,.qidv-l-J Gds . (20)
R S2
Following essentially the same procedure as in Problem I, one finds
(dJ/de)s=o = —J g¥nK* n,-ds-l—J nK*F*ds . (21)
S S>

Since 5 vanishes on S, this can be written

(dJ/de)e=o = j nK*(F* —qfn)ds, (22)
52

which is seen to vanish because of (17).
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