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Conduction With Mixed 

S U M M A R Y  
For the boundary value problem of steady heat conduction with general boundary conditions a variational problem 
is formulated by adding a simple surface integral to Butler's volume integral. 

1. Introduction 

There has been considerable interest recently in formulating the problem of heat conduction 
as a variational problem. For example, Hays [1] gives an integral which takes on a stationary 
value when the temperature distribution satisfies the heat conduction equation in a region R, 
provided that at all points of the surface of R either the temperature is prescribed or the normal 
heat flux vanishes. Hays' formulation is applicable to both time-dependent and steady problems, 
and the conductivity and thermal capacity may be any given functions of the temperature. 
Butler [-2] proposes a much simpler integral for steady problems with the same type of boundary 
conditions. 

However, one often has the normal heat flux prescribed, rather than vanishing, on a portion 
of the bounding surface, or the even more complicated case when neither the temperature nor 
the normal heat flux is given, but rather a relation between them exists, as, for example, a 
surface heated or cooled by convection or radiation. It is the purpose of this note to show that 
these more complicated problems may be expressed as variational problems by adding a simple 
surface integral to Butler's volume integral. 

Biot [3] has also given variational principles for heat flow problemsand has included the 
types of boundary conditions considered here. However, he is primarily interested in time- 
dependent problems, and his integrals do not seem to reduce in the steady case to the simple 
forms given in the present paper. 

2. Problem I: Normal Heat Flux Prescribed 

Let it be required to find the steady temperature distribution, T(xl, x2, X3), in a region R, 
bounded by a surface S, subject to the boundary conditions 

T is prescribed on $1, a portion of S. (1) 

qini is prescribed on $2, the remainder of S. (2) 

Here, q~ denotes the Cartesian components of the heat flux vector and nl denotes the components 
of the outer unit normal to S. The heat flux is related to the temperature field by the Fourier 
law of heat conduction, 

qi = - - K r i ,  (3) 
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where K = K(T) is any given function. The conservation of energy requires that 

q~,i = 0 in R .  (4) 

Let T*(xl, x2, x3) be the temperature distribution which satisfies the system (1), (2), (3), (4); 
and let K* and q* be the corresponding conductivity and heat flux. Further, let T(xl, x2, x3) 
be a neighboring function to T*, satisfying the same boundary conditions. Then T may be 
expressed as 

T = T* + et/, (5) 

where 17 is an arbitrary function of the co-ordinates and e is a small parameter. The conductivity 
corresponding to the temperature field T is 

K = K* + erIK' (T*), (6) 

where K'(T*) denotes the derivative of K(T) with respect to T, evaluated at T = T*. Similarly, 

qi = - [K* + erIK'(r*)] (T* + et/,i), 

which is, to the first order in e, 

qi = q* - e(rIK*),i . (7) 

Since T and T* must agree on $1, and q~n~ and q* ni agree on $2, 

t/--0 on S 1 ; (8) 

(rIK*).,n, = 0 on $2. (9) 

Define H(T) to be 

H(T) = I K(T) dT.  (10) 

Then, for T near to T* 

H(T) = H* + erIK* . (11) 

It can now be shown that the following integral assumes a stationary value when T = T* : 

l= fR q, qidv+ fs2q, nflds. (12) 

If one expresses the right side of (12) in terms of starred functions and variations, one can then 
find 

(dI/de),=o= fR-q*(rlK*),idv+ fs ni[-H*(rIK*),i+q*rIK*]dS. (13) 

The volume integral in (13) may be written 

-fRq*(tlK*),idv=-fR(q*riK*),flV+fgrlK*q*idv. (14) 

The first integral on the right side of (14) may be converted to a surface integral, and the 
second vanishes because q* must satisfy equation (4). Also, in (13), the first term in the surface 
integral vanishes by the boundary condition (9). Hence, (13) becomes 

(dI/de)~=o= - f  q*rIK*nids+ f q*rlK*nids. (15) 
S 3 $2 

But in (15), there is no contribution from the integration over S1, because t/vanishes there by 
boundary condition (8). Hence, 

(dI/de)~ = o = 0 (16) 

which proves that I is stationary when T = T*. 
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3. Problem II: Normal Heat Flux a Function of Temperature 

This is the same as P rob l em I, except  tha t  b o u n d a r y  condi t ion (2) is replaced by 

qlni = F(T) on $2 ,  (17) 

with F a specified funct ion but  nei ther  qg nor  T given on S 2. 
Define G(T) to be the funct ion 

G(T) = S K(T ) F( T ) dT  . (18) 

If, as before, T* is the t empera tu re  dis t r ibut ion which solves the problem,  and  er/is its variat ion,  

G (T) = G* + e~lK* F*.  (19) 

A functional  which is s ta t ionary  in this case is 

J : f R  qgqldv+fs Gds. (20) 
2 

Fol lowing essentially the same procedure  as in P r o b l e m  I, one finds 

(dJ/de)  o = - js,e, K*n, ds + v* ds. (21) 

Since q vanishes on $1, this can be wri t ten 

(dJ/d~), =o = [_ tlK* (V* - q* n,)ds, (22) 
d 5  2 

which is seen to vanish because of  (17). 
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